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ELECTROMAGNETIC SHIELDING EFFECTIVENESS FOR
ISOTROPIC AND ANISOTROPIC MATERIALS

1, INTRODUCTION

The purpose of this report.is to present analysis techniques applicable
to the assessment of electromagnetic shielding effectiveness of a variety of
types of materials including advanced composite materials (e.g., fiber-rein-
forced epoxies where the fibers are "long" and "oriented"), conductive filled p
thermoplastics (randomly oriented, chopped fibers or other conductive particles) ]
and the usual metallic shields. Advanced composite materials are now widely
used as structural and surface components in aircraft and spacecraft. Chopped-
fiber-filled structural foams are used as enclosures for electronic equipment.
Such applications require accurate assessment of electromagnetic shielding
effectiveness,

The following sections present a unified approach to plane-wave shield-
ing analysis using ABCD and scattering parameter techniques based on analogies
with distributed networks. Related techniques and preliminary results were
presented in an earlier report [1]. Some key results from [1] are included in
this report for completeness.

Chapters 2 and 3 present background material. Several important results
for isotropic materials are developed in Chapter 3 and presented in new formats.
Chapter 4 introduces scattering parameter techniques. Chapter 5 treats aniso~
tropic multilayered shields from several points of view, including a very
general arbitrary polarization, arbitrary angle of incidence analysis.

Z. BACKGROUND

An electromagnetic shield is an enclosure intended to prevent electro-
magnetic energv within it from escaping and conversely to prevent electromag-
netic energy exterior to it from penetrating to the interior. A perfect shield
would provide total isolation between interior and exterior. 1In practice the
degree of isolation between interior and exterior is less than perfect and
seldom exceeds 100 dB. :

The degre« >f isolation provided between interior and exterior of a
shield is commonly called its shielding effectiveness. A measure of shielding
effectiveness could be obtained by determining field strength at a particular
location inside the shield and then removing the shield and determining the
ambient field strength. Errors can occur in such measurements due to such
effects as modification of the sources of the external ambient field by the
presence of the shield, and proximity effects on the internal field measuring
device caused by the shield walls.

Shielding effectiveness is, thus, the insertion loss incurred by elec-
tromagnetic energy in passing from an input medium through a shield into an
output medium. Both reflection and absorption contribute to shielding effec-
tiveness. Aircraft require substantial electromagnetic shielding to protect
sensitive internal electronics from extraneous signals, Some vital areas
particul.rly sensitive to inadequate sh%élding include low-level integrated
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{ circuit communication and navigation equipment, fly-by-wire systems, fire
control systems, and electro-explosive devices.

In a typical situation the skin of an aircraft might be considered the
shield with the air external to the vehicle as the input medium and a complex
mixture of personnel, air, cables, electronic devices, fittings, etc. of the
aircraft's interior as the output region. The external electromagnetic field
to be excluded from the interior of the shield might be produced by any of a
variety of electromagnetic sources including a direct lightning strike to the
aircraft, a nearby lightning strike, a nearby radar or other high-powered
transmitter, or perhaps by a nuclear detonation (EMP). Alternatively, the
shield may be the cabinet enclosure of an on-board piece of equipment whose
interior is to be protected from all the above types of signals plus possible
interference from other on-board equipment.

Potential interfering electromagnetic fields may arise from ''mearby" or
"distant" generating sources. ''Near'" to a generating source, usually either
the electric or the magnetic component of the field will dominate. For sources
that resemble loops of current, magnetic field dominates in the region near to
the source. For sources that resemble linear dipoles, electric field dominates
in the region near to the source. Sufficiently far from either type of source,
the propagating field becomes a plane wave in which the field energy is equally
divided between the magnetic and electric field components.

! Wave impedance is defined as a ratio of electric to magnetic field

! components. For a plane wave that ratio is 1207 ohms or approximately 377 ohms.
Near to current loop type sources the wave impedance is very small compared to
377 ohms because the magnetic field is large relative to the electric field.
Near to linear dipole type sources the wave impedance is very high compared to
377 ohms because the electric field is large relative to the magnetic field.
Wave impedance of the energy incident on a shield is a critical factor in
determining whether or not the shield will be effective in excluding the signal.
It turns out (as will be seen) that it is much more difficult to shield "low-
impedance" magnetic-type waves than to shield either '"high-impedance" electric-
type waves or ''mormal-impedance' plane waves. Shielding against low-impedance
waves is particularly difficult at low frequencies.

A rough guideline for separating sources into "nearby' and 'distant"
types is to consider it a nearby source if it is closer than one-tenth of a
wavelength to the shield. At 100 KHz, 1 MHz, 100 MHz, and 1 GHz one-tenth
wavelength is approximately 1000 feet, 100 feet, 1 foot and 0.1 feet, respec-— ‘
tively. Thus, for frequencies up to about 1 GHz, one-tenth wavelength is a i
relatively large distance compared to the size of modern circuits and 'near
fields," at least from other on-board equipment, may cut across several

circuits,

Practical shields seldom have shielding effectivenss greater than 100
- dB. Metals are in general good electromagnetic shields. Shielding effective-
ness of a metal structure is degraded by the presence of fabrication seams and

| joints, access doors and windows and other apertures. A metal aircraft with
the usual apertures seams and cracks will have an effective overall shielding

of the order of 20 dB at UHF frequencies. Commonly used composite materials,
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composed typically of small, relatively poorly conducting fibers embedded in an
insulating matrix, provide considerably less shielding particularly at lower
frequencies. Metal matrix composites and insuiating matrix composites with
metallic fibers are being studied, and from the point of view of electromag-
netic shielding such materials would clearly be superior,

3. SHIELDING THEORY

Shielding effectiveness (S.E.) is an exceptionally difficult quantity to
evaluate for a given material because S.E. dpends not only on intrinsic material
parameters but also is a strong function of shield geometry and of both inter-
nal and external environments of the shield. 1In actual situations internal
and external shield environments are usually complicated and time varying (e.g.,
internal-personnel and equipment inside an aircraft; external-aircraft in
hanger, on runway, in air). In addition real shields have a variety of seams,
joints and apertures that generally degrade shielding effectiveness. Approxi-
mations are necessary in order to reduce a shielding configuration to a
manageable electromagnetic boundary value problem.

Plane wave shielding theory has long been used as an aid in character-
izing materials and providing a baseline measure of shielding effectiveness.
In this report plane wave shielding theory is extended to several classes of
anisotropic materials and recast in the very useful scattering parameter format,
Coupling mechanisms that degrade instrinsic shielding are briefly described.

3.1 Plane Wave Normally Incident on Infinite Flat Plate

The manner in which an electromagnetic shield transmits plane electro-
magnetic waves has been shown [2] to be analogous to the manner in which a
conventional transmission line transmits electrical current and voltage. An ‘ ]
idealized configuration consisting of a plane wave normally incident on an
infinite flat plate shield, as shown in Figure 1, provides a useful baseline or
reference value of shielding effectiveness. It also serves as a surprisingly
good approximate model for a number of more complex configurations that are used
for laboratory evaluation of shielding effectiveness. As a first step it is
assumed that the shield material is homngeneous and is isotropic in the plane
of the shield. This hypothesis obviously includes the usual metallic shields
but it also appears to include multilayer graphite epoxy laminates in which
the layers are oriented at different angles (e.g., 0°-90°-0°). Unidirectional
laminates and perhaps even multilayer, mixed orientation boron laminates require
a different hypothesis taking into account the three-dimensional anisotropy
effects. The less complex behavior of the multilayer, mixed-orientation
graphite laminates arises from the fiber-to-fiber contact between layers. The
more complex unidirectional layer configuration has also been modelled and is
discussed in Section 5.3 of this report.

Using the well known transmission-line analogy [2] of plane wave propa-
gation as shown schematically in Figure 2, all types of 2-port representations
[3] may be utilized to represent the shield. The "Z" and "ABCD" parameter
representations have been widely and successfully used in the past. Scattering
("S") parameters [4] offer in many instances distinct advantages such as ease
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of automated measurement and direct interpretation in terms of transmitted and
reflected components. Scattering parameters are treated in Chapter 4 and
applied to multilayer anisotropic shields in Chapter 5. The scattering param-
eter approach is equally valid and easy to use for the isotropic, homogeneous
shield. However, to facilitate comparison with certain classical results, the
immediately following analysis is carried out in terms of ABCD parameters. A
simple scheme for conversion to S-parameters is given in Section 4.3. The
computer programs used for numerical evaluation of shielding effectiveness use
a combination of multiport ABCD and scattering parameters.

Figure 3 (a-c) illustrates the details of the schematic representation
of plane wave propagation via the transmission-line analogy. Proper choice of
the source and load wave impedances (Z _ and Z .) permit this model to be used
even when the incident wave is not a plane wave, e.g., in the near field of a
loop of current. This technique is illustrated for a two-loop measurement
configuration in Section 3.2. The basic procedure is to analyze the trans-
mission line model to determine its total insertion loss. That insertion loss
is then the same as the shielding effectiveness of the shield modelled.

The overall ABCD matrix for the shield with the effects of the output
medium included is obtained as the product of the matrices for the individual
components and is given by:

~ - B N
AT BT A B 1 0 (A + ?~—) B (1)
= - wL
C D c D Loy LN 5
T T z €+ 5—) D
wL wL
N
where A = D = coshf and n = Yu/e = intrinsic wave impedance
n,
B =n sinhf O = vt = electrical length
a\
C = 1/n sinhb Y = propagation factor
U = permeability
€ = permittivity.
Thus,
V1 Ap By VL )
= ' where IL = 0.
L 1 Dp =
i r i .
= = + 3
Vo=V vy v;a i) (3)
i
i r _ 1. _
L=+ I =70 - )
wS
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where Z
defined Tn Figure 3.

1
Z,. -2 1.7 Yus A, -7 C Input
o, = L MS Lo ws T Reflection
in Z, + 4 v AL+ 2 . .
in ws 1 ” T ws T  Coefficient
I, ‘ws

is the input impedance to the 2-port and other circuit quantities are

Substituting from equations (1) and (3) and (2) and solving for

ws

v, -1,
T and T yields:
2 2
v z z (4)
1o N+ 28] coshe + [+ "Ssinne
2 Z Z "
2 vl wl,
= Reciprocal of the electric shielding ratio
i
-1 z Z
L l’{[—"—\’L + 1] coshl + [+ ~&¥ ] sinhi} (5)
I 2 Z Z T
2 ws wS
= Reciprocal of the magnetic shielding ratio.
Then,
C ahields : b (6)
Magnetic Shielding Effectiveness = -20 1oglol ~] and
i
_[1
v,
Electric Shielding Effectiveness = -20 log, [-=]. (7
i

/
\]

Notice that magnetic and electric shielding ratios are identical if

= ZwL' i.e., for ZwL = Zws = ZO, the inverse ratios are

V-G 1 g

—~ = -— = cosh0 + —~(——~rl + —g)sinhe. (8)
V2 12 2 Z0 n

By proper choice of Zw and Zws to match the incident wave characteris-
tics, it is possible to use equations (4), (5), and (8) as very good approxi-

mations to a number of other more complex shielding configurations. Physically

this is true because the wavelength is typically much smaller within the shield

material than outside. In most shield configurations shield thickness is small

compared with shield radii of curvature, and to the characteristics of sources

utilized in certain measurement structures.

Multilayer shields are easily handled by using the cascading property of
ABCD parameters as shown in Figure 4. Having obtained the effective ABCD
parameters of the multilayer shield, equations (4), (5), and (8) are used as
before to evaluate the various shieldin% requirements.
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The plane wave shielding given above is used as a 'reference" through-
out this report. Each new configuration is, where possible, mathematically
related to the reference plane-wave configuration, For example, as will be
shown, it is possible to relate both transfer impedance and two-loop/flat plate
data to the above model.

The transmission-line model of isotropic shields can be extended to
handle plane waves incident at oblique angles [5]. The required modification
is straight forward, and only the characteristic impedance and propagation
factor must be changed.

3.2 Coupling Mechanisms

Four basic coupling mechanisms [6] degrade the performance of a shield.
The mechanisms are skin diffusion, aperture coupling, joint coupling and TEM
penetration,

Consider a solid (no apertures, seams, etc.) shield. An impinging
electromagnetic field establishes a current density on the exterior surface of
the shield. That current density penetrates by diffusion to the interior
surface of the shield where a tangential electric field is establsiehd. The
proportionality factor between the interior tangential electric field and the
exterior surface current is called the surface transfer impedance. The overall
electromagnetic energy transfer by this mechanism is called skin diffusion.
Skin diffusion is controlled by proper choice of material thickness, conduc-
tivity and permeability.

Aperture coupling occurs as the result of an external field exciting
holes, cracks, windows or other openings in the shield. The field established
in the aperture by the external field then couples to the internmal region. The
effects are typically difficult to calculate exactly for a variety of reasons
including strange aperture shapes, complicated and changing interior and exte-
rior environments. Computer programs such as IEMCAP use shape approximations
and other idealizations to predict aperture response. Aperture coupling is
controlled by proper use of screens, metallic coatings, rf gaskets, etc.

Well formed joints in shield materials (i.e., joints of uniform construc-
tion and good electrical contact without large apertures or cracks) may still
provide a coupling mechanism via the change in surface impedance experienced in
crossing the joint. Such joints usually are described in terms of a distributed
joint transfer admittance per unit of joint width,

TEM penetration is the result of induced currents propagating along
wires, cables, antenna feeds or other conducting paths into the shielded area.
These currents are transmission-line-like currents (hence the name TEM). This
mode of coupling can cause further problems by the induced currents generating
a field along the wire which may at a distant point induce other troublesome
currents in some circuit thought to be well shielded.

3.3 Two-loop/Infinite Flat Plate Configuration

This configuration (Figure 5), with the two loops parallel to the flat
plate having a common axis and spaced such that the flat plate lies in the near

10
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Figure 5. Two-loop/Infinite Flat Plate Configuraticen




field of the loops, is closely related to several popular and useful configur-
ations for measuring the shielding effectiveness to low-impedance waves. The
low-impedance (magnetic field dominates) waves as viewed at the flat plate
result from being in the near field of the loops. Note that the wave impedance
of the impinging wave varies over the surface of the plate as a function of
distance from the source. If the coil-to-plate spacing is a small fraction of
a wave length, most of the energy is concentrated within a narrow zone under
the coil so that in approximate representations a constant source wave impe-
dance may be used with little error,

Shielding data from configurations of this type for fiber-reinforced .
laminates have simple interpretations only for materials which are essentially
isotropic in the plane of the flat plate, e.g., for multi-layer, mixed orien-
tation graphite laminates but not for unidirectional samples. This restriction
is a consequence of the need for roughly circular currents to flow in the plane
of the flat plate if the incident magnetic field (which is largely perpendicu-
lar to the plate) is to be terminated.

Configurations for which the two-loop/infinite flat plate configuration
serves as a useful approximate model include a variety of box-like structures
[6] with the flat plate shield forming a partition and undesired leakage
between loops inhibited by the enclosure. Such configurations are typically
used at frequencies below 100 MHz. Care must be taken, however, since box
resonances can obscure the shieLd's properties.

Moser [7] and Bannister [8, 9] have provided an integral equation solu-
tion for the shielding effectiveness of the two-loop/infinite flat plate
geometry assuming uniform current in the loops. ;it is assumed that the shield
is a good enough conductor that displacement currents in the shield can be
neglected. The complete expression for shielding effectiveness as given by
Bannister is given in Appendix A,

Tair

As shown in Appendix A, if it is assumed that r' < 50 Tt > 2,
T r'
r s s . .
Trr' > 10, ;U > 10, z >> t and z >> a, where the quantities are defined in
r

the appendix, then

T z

S.E. ~ 8,686 oo
E 8.686v2 Tt + 20 log, ) (575s ur) . (9)

dB

This equation can be shown to be of the same form as the plane wave
shielding equation provided an appropriate near-field value is used for the
source and load wave impedances. Equation (8) for plane wave shielding can be
cast in the well-known Schelkunoff form [ 2] using the following parameter
definitions

z (
o k-1
= = LSS = 2t 11
k=3 = k¥ 1] P 2 am
Using the above parameters equation (8) can be written as:
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Inverse Shielding _ 1 P YA N
Ratio > (1 - q¢ Ye . an
Shielding effectiveness is then:
1 -20, 6
S.E.dB = 20 loglo'p (1 - q¢ e . (12)

For the present situation, using Z0 = jwuorl and recognizing ]kl >>1, it
follows that q = 1 and 1. k/4. TFurthermore, for Trt > 2, the term

- P
20 1og10|1 - q€ 26| is negligible. Thus, equation (12) becomes

S (13)

T. T
. rl
E.gp © 8.686v2 Tt + 20 loglo[ ]

2.828u_
r

Following -Meoser, to compensate for the fact that the near field charac-
teristic wave impedance is actually not constant over the shiled, let r, = z/3.
Then equation (13) becomes identical with the simplified Moser formula of
equation (9). This indicates that under a class of important measurement
conditions the plane-wave shielding equations with appropriate source and load
wave impedances yield excellent results. The transmission line analogy thus
applies to the configurations discussed in Sections 1.3.1 and 1.3.2. Frequent-
ly a symmetric arrangement with rl =TI, = z/2 is utilized in measurements.

3.4 Quasistatic Shielding Formulas for Electrically Thin-Shell Ellipsoids

The boundary value problems for certain ellipsoidal-shell shields
geometries as shown in Figure 6 have been solved and the corresponding magnetic
shielding effectiveness calculated [9]. Following King, formulas for each of
the ellipsoidal and degenerate ellipsoidal shielding formulas can be obtained
in the same form as the plane wave shielding equations. These formulas are
useful in interpreting measured data from flat-plate and quadrax structures as
well as spheres and closed cylinders. Using the notation developed for the
plane wave shielding to low-impedance impinging waves can be placed in the
form

3 YA
Inverse Magnetic , .. o "M .. o (14)

Shielding Ratio 2n

A similar relationship can be derived for high wave-impedance impinging
signals. The equation is of the same form as the above case but with a
different wave impedance for the impinging signal.

. Z
Inverse Electric . 4 ¢ . E _. g (15)

Shielding Ratio 2n

Equation (15) is different from that given by Boeing [ 6] but reduces to the
Boeing form as a special case.
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Figure 6. Quasistatic Ellipsoidal Shields.




{ 3.5 Surface Transfer Impedance and Effective Conductivity

‘ Surface transfer impedance has been used for many years as a measure of
shielding effectiveness, Combined with other "two—port" parameters it canalso
be used to characterize shielding materials in computer-aided analysis programs
for determining interior and scattered fields of complex geometrical structures
f10]. For shields which are thin compared to the radii of curvature of the

t shield and for which wavelength within the shield is much smaller than that

] external to the shield, the electromagnetic behavior of the shield is essen-

tially a local phenomena. Each local region may then be considered planar [2].

For a planar shield, the two-port parameters are given in Figure 7.

The impedances 212 and Z2 are known as surface transfer impedances
since they relate field values a% opposite interfaces of the shield. Surface
transfer impedance is frequently measured using triaxial or quadraxial config-

{ urations [6] and the data are reduced using the Schelkunoff theory [2]. Notice

= that for efectrically thin samples (i.e., small 6) cosh 6 ~ 1 and

- le ¥ 2y, ¥ 2y, =1 1 =" csch 8. Thus, for electrically thin shields a

‘ measurement o% the gransfer impedance completely describes the shield, For
electrically thick samples Z and 22 are not approximately equal to Z and

B additional measurements are réequired %o totally characterize the shield.,

From Figure 7 surface transfer impedance written with the new symbol Z

r
becomes: t

l Ztr = n ecsch 6 {16)

Surface transfer impedance can be related to the two-loop/flat-plate
configuration through use of the approximations for Equation (9) or the
equivalent Equation (14) as follows

Inverse Magnetic ZM
=R = + == sinh 6
Shielding Ratio - X~ €osh O + 7. sinh (17)
’ Substituting sinh 6 = 1 -1 yields
n ncecsch 68 2
tr
A
. 1
R = cosh 6 + T (18)
tr
3 Thus,
| 3.
Z
. M
! Zep © 2(R - cosh 8) (19)
- For good shields cosh © = 1 at low frequencies where 0 is small (i.e., the

shield is electrically thin) and at high frequencies R is much larger than 1
| cosh 9. Thus, for reasonably good shields Z , can be written in terms of the
shielding effectiveness measured in the two—ioop/flat—plate configuration as

15 ;
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Figure 7. Two-port Impedance Representation

Note: ﬁ and E directions assumed cause
propagation toward the shield from
both left and right side of the
shield
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Z

- M
Zoo " TR- D (20)

where R is obtained from the shielding measurement as

[SEdB]
R= 10t 20

At frequencies where the shield is electrically thin so that # is
sufficiently small that sinh O can be replaced by 6, it is possible to deter-
mine an effective conductivity directly from 2 in a very simple manner.
Such scalar conductivity numbers, as mentioned earlier, seem meaningful for
multi~layer, mixed orientation, graphite laminates, but not for unidirec-
tional graphite laminates. Assuming a scalar effective conductivity ¢ £f in
the plane of the laminate and recognizing that for reasonably good conductors

Yy (4 ) Trfuoeff = Geffn’
then
mf
L+ 2 H
ff
= — = (21)

z . =
tr sinh 0 sinh[il + j)t/vfucefg]

For small O, sinh 6 = 6, so that

. Tf
1+ i E;JL‘
Z ~ eff = ]‘ _"‘7'7\
tr . g _.t° v
t(1l + J)/ﬂfuoeff eff

Thus, for small ©

1
~ 23
0eff tZ (23)
tr

For larger 0, C can be obtained by solving the transcendental equaticn

. _ - 4
Ztr sinh 6 n 0 (24)

The phase of Z . has not been measured in past experiments, but would
clearly be needed if Ecr were to be used to characterize a material in system

analysis programs.

The form of the approximation given in Equation (23) is in excellent
agreement with measured data given by Boeing (6] with varving thickness,
Calculated conductivities seem to be in agreement with results from
measurements by other techniques discussed in Sections 2.0 and 3.0.

17
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As an example of the correspondence between two-loop/flat-plate measure-
ments and surface transfer impedance measurements, consider the 24-ply T-300/
5208 graphite samples measured by Boeing [6]. The samples were cross-ply
layups (0°/45°/90°).

At 1 MHz the measured magnetic shielding from the two-loop/flat-plate
configuration is M.S.E. = 16 dB, Thus, R = 10 8 = 6,31 and for a loop-to-

plate spacing of 1 inch and ]ZMI = ’jwuob] = 0,201 ohm.
Then
“y 0.201 -2
IZtr! CTER-D 253D 1.9 x 10 © ohm

as calculated from the two-loop/flat-plate measurement data. The corresponding
1 MHz direct measured value of surface transfer impedance is

lz | = 1.8 x 10_2 ohm

Ttr
as measured in the quadrax configuration. The agreement is excellent.
For the same material at 1 MHz

1 1

4
o] ~ = ~ 1.73 x 10 mhos/m
eff 12 Tt (18 1072)(24  5.25 x 10~ x 2.54 x 10”2

for T-300/5208 Cross-ply layup at 1 MHz.

Similar calculations for 12-ply HTS/5208 graphite show excellent agree-
ment between flat-plate and quadrax data and indicate

o .. =~1.5x lO4 mhos/m
eff
for HTS/5208 cross-ply layup at 1 MHz.

3.6 Transverse Flat Plate Samples in Waveguide and Transmission Line
Structures

Transmission loss and phase measurements on a flat plate sample com-
pletely filling the transverse section of a waveguide or transmission line
structure can be utilized to characterize a material electromagnetically [11].
Provided the reflections from the sample are not too large, conductivity and
permittivity can be determined analytically from the measured insertion loss
and phase, Reference [11] provides a complete discussion on limitations of
the solution procedure., Typical arrangements for rectangular waveguide and
coaxial line structures are shown in Figure 8. The analysis of these and other
structures can be carried out simultaneously through the use of the generalized |
transmission line analogy [2]. ;

- i
)
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3.6.1 General Case

Following Schelkunoff's procedure [2], let each section of the measure-
{ ment structure be represented by a section of generalized transmission line.
The geometry being discussed is shown in Figure 9, The characteristic imped-
ances of the equivalent transmission lines are interpreted as the wave
impedance of the actual structure, Equivalent transmission line propagation
factors are equal to the corresponding factor of the real structure,

From Figure 8,

Vp X B vQ
= (2%)
1 o B -I
| P_J L_ Q
where
, I ==V 6 = vt
Q Q/203
A = cosh O B = 202 sinh 0O
¢ = E%EE—Q B = cosh @ .
02
From equation (25), it can be shown that
I —Z.
’ —Q=z hogzz inh O (26)
IP OZCOS 0351n
;Q Tz sh 92232 sinh © (27)
P “03°° 02°*

Let the total impedance at P looking toward Q be equal to ZP (note, ZP
includes effects of both interfaces). Then,

ZZP
V, =TV, = 50—V, (28) ;
. + r; !F
P v i Z01 ZP i
' 2Z
' 01
I =11, = ———"——1, (29)
. P I7°i Z01 + ZP i

where Vi’ Ii are the incident voltage and current, respectively, and
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[é03cosh 0+ 20231nh 6} VP

=— . (39)

Z_ =2 P
sinh ?J IP

P 02*?02cosh 0 + 203

Replacing cosh © and sinh O by their exponential equivalents and sub-
stituting from Equations (26) to (30) into Equation (25), the following result
is obtained (after considerable algebra).

-0
-I 1+p DA -0p JE
T = __~Q, = v,P v28 (31)
I I. =2
N 1 pv,Pov,Qb
where TI = overall current transmission coefficient across the section PQ
Zo1 = Zo2
o) = ———=———-—~% = interface voltage reflection coefficient at P
v,P YA + 2
01 02
203 = 202
o) = ——————= = jinterface voltage reflection coefficient at Q.
vaQ o Zg3 * Zg

It can be shown that the overall voltage transmission coefficient across the
section PQ is

v, oz
A LR (32)
i ‘o1

2 )
(1 - e)e
T=T =T, 7537356 (33)
l1-p¢
v
where
B W
v ZO1 + 202
Insertion loss is thus
I.L. = -20 1og10|T1 (34)

and the insertion phase is

Ad = /T = Angle of Transmission Coefficient




Given measured values of insertion loss and insertion phase for a
specified structure, Equation (33) can be solved for the conductivity and the
real part of the permittivity of the material under test, This procedure is
demonstrated in Section 3,6.2 for a rectangular waveguide measurement system.

3.6.2 Rectangular Waveguide

As a particular case of the preceeding analysis, let the transmission
structure be TEl rectangular waveguide with region 2 consisting of a section
of guide of widtg "a," height "b" and length "t," totally filled with the
material under test. Further assume that the material can be represented as a
lossy dielectric with 4y =y , € = € €' (1 - jtand). Tand is the loss tangent
of the material and ¢' is tfe real part of the permittivityv, Regions 1 and 3
are air-filled and haVe the same width and height as section 2.

n
Z%E = —--—%%—~— = Wave impedance of regions 1 and 3 (36)
1G9
A
c
L2
LTE = - = Wave impedance .
cf region 2 (37)
H U
where n_ =4-2 , -4/ -&
(o} P 2 €
o 2
Ao
£ =g - = —
v r (1 - jtand), AZ = =
r
ko = wavelength in freespace at measurement frequency
AC = cutoff wavelength (e.g. 2a in air-filled waveguide)
Also, 1 ’
Z - Z
o, = —E__TE (38)
v Zl + 22 '
TE TE
G =Yt =jwpue /e < A3
oo r (X% t. (39)

Substitution into Equation (33) yields the desired result.
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Given measured values of insertion loss and phase, Equation (33) can
now be solved for €' and tan 8. The conductivity, 0. is related to the loss
tangent, tan Gr, by 0 = we'e tan §. An iterative numerical procedure [12] is
used to solve Equation (335.o For relatively high conductivity, materials such
as graphite epoxy, insertion loss and phase are quite insensitive to variations
in e;, as shown in Figure 10. It is then exceptionally difficult to determine
accurate values of €' from measured insertion loss and phase by solving Equa-

tion (33). 1If E; isrindependently known, accurate conductivity values can be
obtained.

4.0 Scattering Parameter Techniques

The ease with which scattering parameters can be measured [4, 13] makes
them especially well suited for describing distributed circuits and most
electromagnetic propagation problems. The simple direct relationship between
Scattering parameters and transmitted and reflected power is an added advantage
in interpretihg results.,

4.1 Definitions

Generalized scattering parameters have been defined by K. Kurokawa [2,
14}, These parameters describe the interrelationships of a new set of
variables (a,, b.). The variables a, and b, are normalized complex voltage
waves incidefit ofi and reflected from'the itﬁ port of the system. They are
defined in terms of the terminal voltage V., and an arbitrary reference imped-
ance Zi’ as follows: t

Vi + 2.1,
a, = 11 (40)

L 2/TR

Z,
e i

*
V., - Z,1,
bi =L 11 (41)
2¢]Rezi]

where the asterisk denotes complex conjugate.

For most measurements and calculations it is convenient to assume that
the reference impedance Z, is positive and real. For the remainder of this
report, all variables andlparameters in scattering analysis will be referenced
to a single real impedance R.. Other normalization schemes are useful in
some cases. Generalized normalization is discussed in the literature [2, 14].

The quantities used in defining S-parameters for a 2-port system are
shown in Figure 11. The independent variables a, and a, are normalized inci-

dent voltages (or the corresponding analog quani%ity), as follows:

V. + I.R

a = L 10 _ voltage wave incident on port 1 = vil/lR0 (42)
Y ™ /Ry

(42)
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The linear equations

The S-parameters Sll’
! —bl
S11 B a;

"y
s -2
22 a,
S =E_2.
1 21 a1
5. =
| 12 a,

a, = v2 + I2R0 _ Vvoltage wave incident on port 2
X 2Ry o
: Ry
Dependent variables b1 and b2 are normalized reflected voltages:
V. - I.R Voltage wave reflected v
bl _ 1 10 _ (or emanating) from port 1 _ 'rl
215, A "
Ff v - R Voltage wave reflected v .
b2 __2 2 0 _ (or emanating) from port 2 _ 'r2
2%, 5 5

describing the 2-port are of the form:

SlZ’

a.=

5 “«> >
b =S a or

o
I

S..a, + S,.a

1 1171 1272

"2 2171 2272

821 822 are:
Input reflection coefficient with the

= output port terminated by a "matched"

load (ZL = R0 sets a, = 0).

OQutput reflection coefficient with the
= input port terminated by a "matched"

load (ZS = RO and VS = 0).

Forward transmission (insertion) gain
= (or loss) with the output port
terminated in a "matched" load.

Reverse transmission (insertion) gain
= (or loss) with the input port
terminated in a "matched" load.

(43)

(44)

(45)

(46)

47)

(48)

(49)

(50)

(51)




4

b b, and the various power waves of

{ The relationships between a;, a 1’ P

‘ interest are given by
la, |
1

2’

= Power incident on the input port

= Power available from a source of impedance RO
‘az|2 = Power incident on the output port

= Power reflected from the load

Ibll2 = Power reflected from the input port
= Power available from a RO source minus the power delivered to ‘
| the input port ;
[b [2 = Power reflected or emanating from the output port
2

<

= Power incident on the load

= Power that would be delivered to a RO load

Hence S-parameters are directly related to power gain and mismatch loss,
quantities which are often of more interest than the corresponding voltage

! functions:
{ !
fS fZ _ Power reflected from the input port ]
11 Power incident on the input port ‘
s ‘2 _ Power reflected from the output port {
22 Power incident cn the output port
9 Power delivered to a RO load
llel ~ Power available from a R_ load

g o ;

i = Transduce power gain with R_. load and source

0
|812|2 = Reverse transducer power gain with R, load
and source.
4.2 System Calculations with Scattering Parameters

Scattering parameters are particularly convenient in calculating trans-
! mitted and reflected power or related quantities such as shieldingeffectiveness.
The transfer parameters S and S are a measure of the complex insertion gain,
Qo 12 gl .
and the driving-point parameters 1 and S ) @re a measure of the input and
output mismatch (i.e., reflection) }oss. &s dimensionless expressions of gain
and reflection, the parameters not only give a clear and meaningful physical
interpretation of the system performance but also form a natural set of param-
eters for use with signal flow graphs [15]. It is not necessary to use signal :
flow graphs in order to use S~parameters, but flow graphs greatly simplify

S-parameter calculations.
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In a signal flow graph each port is represented by two nodes (one for
each variable). Node a_ represents the wave coming into the system at port n
and node b_ represents Phe wave leaving the system at port n. The complex
scattering coefficients are then represented as multipliers on branches
connecting the nodes within the system and in adjacent systems. Figure 12
summarizes the above statements and presents the flow graph representation of
the 2-port system shown in Figure 11.

The simplification of system analysis by signal flow graphs results
from the application of the "non-touching loop rule'" as described in [15] and
summarized in Figure 13, A first order loop is defined as the product of the
branches encountered in moving from a node in the direction of the arrows back
to that original node. A second order loop is defined as the product of any
two non-touching first order loops. Nontouching loops have no nodes in common.
An nth order loop is defined as the product of any n non-touching first order
loops. This rule applies the generalized formula of Figure 13 to determine the
transfer function between any two nodes within a system. The non-touching loop
rule is applied to calculating the transducer power gain of a 2-port system in
Figure 14,

Cascading of 2-port systems is easily accomplished through use of signal
flow graphs and the S—parameter definitions given in Equations (46-51). The
cascading is easiest if done 2 systems at a time. This process and the result-
ing combined S-parameters are illustrated in Figure 15.

4,3 Parameter Relationships for Two-Ports

It is convenient at times to be able to convert between the various
parameter representations for 2-port networks. The equations below provide
those conversion relations most useful in shielding analysis, Other conversions
are in the literature [3, 4].

4,3.1 Z to S

Given a normalized impedance matrix

2
7{ N 11 12 (52)
Z21 Z22
the corresponding S-matrix is
«r Sll S12
S = (53)
Sa1 S22

where




EACH VARIABLE BECOMES A NODE.
EACH PARAMETER BECOMES A BRANCH.
BRANCHES ENTER DEPENDENT VARIABLE NODES AND EMANATE FROM

' INDEPENDENT VARIABLE NODES. 1
| e EACH NODE IS EQUAL TO THE SUM OF THE BRANCHES ENTERING THAT 4
NODE.
by=S47231+Sy33; by =S31231+Sp33)
ay 3 Sx1 b
S11 S22
i)
by S12 3 a2

Figure 12, Flow Graph Notation
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’ NONTOUCHING LOOP RULE

T=py(1-zstmMezi@aPoze@Me . gep1-zem2s..

1-ZLM+ ZL@)-ZL@)+ -

WHERE
TL SUM OF ALL FIRST ORDER LOOPS. 3
ILin) SUM OF ALL nth ORDER LOOPS.
' Py:Pyietc.  PATHS CONNECTING VARIABLES IN QUESTION. ‘
zL il SUM OF THOSE FIRST ORDER LOOPS WHICH DO NOT TOUCH P
EL T SUM OF THOSE nth ORDER LOOPS WHICH DO NOT TOUCH P
T RATIO OF DEPENDENT TO INDEPENDENT VARIABLE. ;
|
|
INPUT IMPEDANCE OF A TWO-PORT WITH ARBITRARY LOAD
ay by
: P, ' Py=S11 Pa=Sy TSy
: s, - r L) =Sy T

b<| 32
o o 2L S {1-Sppl )+ STy Si
LY 1-8,51°
5215121 H
1 [ s
Sh=Snt T Tsr, ;

Figure 13. Nontouching Loop Rule for Use in Evaluating
Transfer Functions
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S21
I S11 522 r
f S12
| by — a2 |
or - P4l TO LOAD ) lby]2 (-1 ]2)
P, a1 F ROM SOURCE 12
(1-|rs|2)
by _ S$21
by =811 P = S T =52y Sy T g+ S99 P Sp2 Iy,
2 12
6y - 159012 (1= 11512) - |r 12
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Figure 14, Transduce Power Gain Calculations
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Figure 15. Cascading "S" for Multilayer Shield
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A z11 (222 + 1)

_ 2
11 A+ 7

z P Tt

12 A, + 2 + Z +1

21 AL+ 2. +7Z__ F1

A+ z22 - (2 1 + 1)

by 1
+
2207 Th ¥z ¥ 2y, T 1
z = 211222 T Z19%p1 -
4.3.2 ABCD to S

Given a normalized ABCD matrix

— A Bl
ABCD =
¢ o
the corresponding S-matrix is
- | Su S
S =
521 S22
where
s -A*tB-C-D
“11 A+B+C+0D
. ) ZACH
12 A+B+C+D
S _ 2
21 A+ B+C+0D
g -~A+B-C+D
22 A+B+C+D

>
n
g
|
=
@]

CH

(54)

(55)

¥ A

.




4.4 Multiport Svstens

Scattering parameter analysis is easily extended to multiport systems.
For a 4-port system the scattering equations would be:

] ar 7
by [—511 S12 Sz S [ A
b, S21 S22 Sp3 0 Sau | 2
= (56)
by 531 S32 S33 Sz || 23
b, Se1 Sa2 Suz S | 3 |
Lo - | . A
where
_ bl _ Input retflection coefficient
S]1 - ;1 at port 1 with matched load at
a2=a3=a4=0 all other ports,
g - Eg_ _ Forward transmission (insertion)
T21 a, gain (or loss) with ports 2, 3,
a2=a3=a4=0 4 all terminated in matched loads.
etc.,

The extension to n~ports is straightforward., Multiport techniques are necessary
in treating shielding effectiveness of anisotropic shields.

5.0 An Anisotropic Model for Plane Wave Propagation (with Applications tc
Single and Multilayer Advanced Composites)

Advanced composite materials are laminates made up of a number of indi-
vidual layers bonded together. Each layer consists of a unidirectional arrav
of long fibers embedded in, and firmly bonded to a matrix. The basic building
blocks of any specific composite are the types of fibers and matrix invelved.
Some fiber/matrix systems are: boron/epoxy, graphite/epoxy, Kevlar/epoxy,
graphite/polyimide and graphite/thermoplastic., Other materials contain grids
of various conductive wires,

The purpose of this section is to describe a macroscopic electromagnetic
model for plane wave propagation through fiber-reinforced and related materials.
It is convenient to distinguish between "ply" and "layer." A ply is the bhasic
composite material unit. A layer is made up of plies with uniform fiber
orientation., Thus, both plies and layers are unidirectional but a layer may
consist of more than one ply. In a multilayer structure, fibers in adjacent
layers have different orientations. A multilayer flat panel with arbitrarily
polarized incident plane waves is considered. The fibers in each layer may be
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oriented in any desired direction permitting both unidirectional and mixed-
orientation samples to be considered.

On a microscopic basis advanced composites are clearly both inhomogene-
ous and anisotropic. From a macroscopic point of view, the fiber spacings are
sufficiently close that over a wide frequency range (perhaps dc - 18 CHz) it
appears that the inhomogeneities can be averaged out, at least to first order.
The anisotropic nature, however, of a unidirectional sample must be taken into
account. For mixed orientation, multilayer samples the anisotropic effects are
important unless the layers are so thin electrically that considerable layer-
to-layer averaging occurs.

Based on the above discussion, it appears reasonable to model each layer
as a '"'quasi-homogeneous" anisotropic material. Both fiber and matrix materials
currently under consideration are nonmagnetic so that the permeability of these
composite materials can be taken to be essentially yu . Both permittivity and
conductivity parameters may be anisotropic. It is assumed that the principal
axes of the permittivity and conductivity properties are the same so that both
the permittivitv and conductivity tensors may be diagonalized simultaneously.
As a labor saving device the usual combination of conductivity and permittivity
into a single complex permittivity tensor is assumed. Two sets of coordinates
are utilized as shown in Figure 16, The x, y, z coordinates are the 'propaga-
tion coordinates,'" and all the final equations are expressed in terms of xyz-
components. The . 7., 23 coordinates are called '"material coordinates.'" The
material coordinate axes are aligned with the principal directions of the
composite material.

Analytically it is possible that the '"material a.es" (., 7., 5, within
each layer be skewed with respect to each of the "propagation coo¥dinate" axes
X, ¥, 2. Physically, however, a laminate is made up of parallel layers with
the fibers of adjacent layers lying in parallel planes but having different
fiber orientationwithin the plane, i.e., the material coordinate 7., will
usually coincide with z in every laver of a multilayer sample, while the direc-
tion of Cl, Cz with respect to x, y varies from layer to layer.

5.1 Unidirectional Samples

Consider a unidirectional flat plate of advanced composite material.
The principal directions (along the fibers, perpendicular to the fibers but
parallel to the plane of the layer, and perpendicular to both the fiber direc-
tion and the plane of the layer) are used to define "material" coordinates.
Let £, be parallel to the fibers, Cz perpendicular to the fibers but parallel
to the plane, C3 perpendicular to both fibers and the plane of the laver. 1In
these coordinatés the complex permittivity matrix is diagonal with each cf the
three components, in general, different.

5N
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Treating Anisotropic Material with "OpticAxis'" in z Direction.

Figure 16, Propagation (x, y, z) and Material (Cl, CB) Coordinates for
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where ¢, =¢_,, - j — .,
ii ii w
In terms of Cl, CZ’ C3 the complex permittiv%ty tensor € is diagonal.
The individual elements of €, namely 311 = Cii -] *aﬁ , can be measured or

calculated for a single unidirectional sample of each fiber/matrix combination.
The matrix in each case is normally a good dielectric while the fibers vary
from modest conductors (graphite) to poor dielectrics (boron) to good dielec-
trics (Kevlar). Thus, the relative importance of €4 and 0.4 in the complex
permittivity gii is a function of the fiber/matrix combination and frequency.

5.2 Wire Grid Model

Prior to detailed analysis of the rather complicated anisotropic model
for fiber-reinforced materials, it is instructive to examine some less compli-
cated gegmetries [16] to perhaps determine some of the dominant features of
shielding to be expected from such materials. Consider an array of infinitely
long, identical, parallel, perfectly conducting wires as shown in Figure 17.
This is, admittedly, a very crude model, but it is useful in illustrating an
important point. Let the wires have a diameter D, and a spacing, S, and let a
plane wave having wavelength, X, be incident normally on the grid. The inci-
dent electric field may be polarized either parallel (i.e., E ) or perpendicu-
lar (i.e., E ) to the axis of the wires. The equivalent circuit of the grid
as seen by the incident wave is given by Marcavitz [17] and is shown in Figure
18. When S/A << 1 the circuit parameters are:

x| 3
o Qn[“D] + o.em(x) (58)
2
Xb S ﬂD]
b _ 51D (59)
Zy LS
s
v, " s s,
o_oafs)? fs)fm]® 1 1)
where
2
- 1l|mD s .3
Ay = l+2[>\} [Q“m)*a]

>
[l
=
+
[
=
Nl
N
T
=
1
=
fen
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Figure 17. Wire Grid Approximation of a Unidirectional
Fiber-Reinforced Material (After Bodnar
| [16])
|
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(a) For Parallel (b) For Perpendicular
Polarization Polarization
Figure 18, Equivalent Circuit of Wire Grid at Normal

Incidence. (After Bodnar [16])
39




and Z, and Y are the characteristic impedance and admittance of free space,
respectivelyy

Inspection of (58) and (59) shows that X and Xli approach zero as A
becomes large, indicating that the inductor of ?igure 8a shorts the trans-
mission line at low frequencies and little power is transferred through the
wire grid. Thus, the grid acts as an effective shield to parallel polariza-
tion at low frequencies., Tnspection of (60) and (61) shows that B approaches
zero and ‘'hat B, becomes large as A becomes large. This indicates”that the
shunt capacitors in Figure 18b act as open circuits and the series capacitor
acts as a short as XA becomes large. This corresponds to a large amount of
energy being transferred through the grid and shows that the grid is not a
good shield for perpendicular polarization.

How long do the wires have to be in order to obtain good shielding
characteristics for parallel polarization? What would the shielding charac-
teristics be if the infinitely long wires of Figure 17 were replaced by a two
dimensional array of short nontouching wires? The shielding characteristics
now turn out to be bad for both polarizations as will be illustrated below.
The conclusion clearly is that a large number of noncontacting fibers will not
provide good shielding. Long conducting paths (compared to wavelength??) are
necessary tor good shielding.

A model for fibers consisting of short, noncontacting plates is shown
in Figure 19. Analysis of such structures has been carried out by Chen [18]
and Montgomery [19]. General equations are provided by both Chen and
Montgomery, but the equations must be programmed for a digital computer to
obtain numerical results. Sample calculations are presented by borh authors,
but no general design information is given. The general trends indicate low
attenuation for both polarizations when the plate dimensions are small compared
to wavelength, A reasonable conclusion appears to be that noncontacting fibers
that are electrically small (i.e., much smaller than a wavelength in their
major dimension) do not provide effective shielding at RF frequencies.

5.3 Unidirectional Sample with Normally Incident, Arbitrarily Polarized
Plane Wave

Assume an infinire plane sheet of unidirectional material of thickness
t oriented perpendicular to the z-direction. Fibers are oriented in the
{,~direction as shown in Figure 16. The I, and z axes are aligned. The
direction of propagation of the incident p}ane wave is +z. The permeability
U is essentially equal to y . Permittivity and conductivity are combined in
the complex permittivity tensor given bv equations (57). In material
coordinates there are two possible normal modes for propagation in each direc- ‘
tion, + and -z. These modes are not coupled to one another and correspond to
polarization perpendicular and parallel to the fiber direction, respectively.
Using the transmission line analogy [2] the response to the normal modes can
be written in material coordinates as follows. ‘




/ g
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%% .
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Figure 19, Model Consisting of an Infinite Periodic
Array of Thin Conducting Plates on a
Dielectric Sheet. (After Bodnar [16])
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For E parallel to the fiber direction (Cl)

Egl(CB) coshol nlsthl Eﬂl(c3 + t)
= (62)
1
. 1 . .n t
HCZ(gB) nlSthCl coshO1 ch(c3 + t)
where
f = wh e1; ¢ k,t
Mo
n = vy = .
1 €11

! For E perpendicular to the fiber direction but parallel to the plane
of the sample (:2)

E (7 [ coshe inh? 3

;2(,3) (oc,hC2 | n251nh02 FCZ(C3 + d)
-H_ (7)) l—sinho ho

"3 n2~ 2 cosh0), —HL:l((;3 + d)

where 62 = wv@ogzz t = kzt

¥

N, = Y gy
' E ,H ,E ,H are components of a single arbitrarily polarized
% S LY S|
plane wave. It is convenient to collect these terms into a single 4-port
matrix equation relating tangential fields at input and output interfaces.
E and H terms are slightly rearranged in the new matrix. Note, there is
no coupling between the Cl and 42 polarizations.

— - 1
B T
: inhC 0 E + t
ECI(CB) cosh@l 0 nlslnhol c1(c3 )
inh® E +t)
coshO2 0 n251nh 2 CZ(L3 o3
0 cosh@l 0 ch(z;3 +t)
L - +
n2sinhO2 0 coshO2 HCI(C3 t 1J




| To transform from components expressed in material coordinates to
: those in propagation coordinates, it can be seen from the geometry of Figure

" 16 that
AL = A cosp + A sind
- X y (64)
A, =- +
C2 Ax sing Ay cosd
where A represents either an electric or magnetic field component. Substitu~
ting from equation (64) into equation (63) yields the following equation: 4
‘ Eil coshe1 0 n181nh61 0] Eol
E, 0 cosh6 0 n.,sinh@ E
i2 2 2 2 02 (65)
sinhe1
’ Hil — T 0 (':OShe1 0 Hol
sinha2
H, 0 —_ 0] cosh® H
i2 n, 2 02
E
i
where
Eil = Ex(z)cos¢ + Ey(z)sin¢
Eiz = —Ex(z)sin¢ + Ey(z)cos¢ H
Hil = -Hx(z)sin¢ + Hy(z)cos¢
1 HiZ = —Hx(z)cos¢ - Hy(z)51n¢
Eo1 = Ex(z+t)cos¢ + Ey(z+t)sin¢
E02 = -Ex(z+t)31n¢ + Ey(z+t)cos¢
H01 = -Hx(z+t)sin¢ + Hy(z+t)cos¢
H02 = -Hx(z+t)cos¢ - Hy(z+t)sin¢.
i
' Algebraically manipulating equation (65) leads to equation (66) given below. ﬁ
1 — NS 17 ]
Ex(z) All A, By By, Ex(z+t)
. . H
» B, P A2 P P By (z40) (66)
i H
Hy(z) i €, Dy DPpp y(z+t) _
- - t ‘
@] (G 2 P Pz | TR i
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{ where
. 2
L Ay < D11=coshOl cosz¢ + coshO2 sin”¢
- 2 2
: Ayy = D22=cosh6l sin"¢ + coshO2 cos ¢
= = = = gi - h
ALy A21 D12 Dyy singp cos¢ (coshOl cos OZ)
2 . . 2
= inh¢ + A
B11 n 51nh01 cos ¢ Ny sth2 sin ¢
. . 2 . 2
E B22 =N smh@l sin ¢ + Ny 51nh62 cos ¢
E Cll = %— sinh@l cos2¢ + %— sinh@2 sin2¢
: 1 2
t . 2
£ Chy = %I sinh@1 sin2¢ + %; 51nh®2 cos ¢
b
_ s ad . . _ {nhO
B12 B21 sin¢ cos¢ (r]1 51nhOl n, sin 2)
1 1 .
F = = si ¢ (- sinh®, - — h@,).
x C12 021 sin¢ cosg¢ (ﬂ 91nh0l = sin 2)

1 2

Other quantities have been defined earlier. Notice that x and y polariza-

tions are coupled uniess ¢ = 0° or 90°. Thus, except for these two

- special cases an x-polarized incident wave will produce both x and y i
] polarized reflected and transmitted waves.

A still more condensed equation results if matrix notation is further

exploited.
> > <« >
Et(z) A B E (z+¢)
t
Ht(z) C D H (z+t)
t
here -
v . Ex(-) Transverse R
Et(-) = =  Components of E at ‘
Ey(')_ either z or z+t !
. (H )7 Transverse
Ht(-) = y =  Components of H at
:Hx(-)J either z or z+t
A A |
and A= 11 12 i
[ 421 4y |
[ B B
- !
B = 11 12 , etc. %
[B21 By 'f
and Aij’ Bij’ Cij’Dij; coefficients were defined above. This 4-port
structure is illustrated schematically in Figure 20. ;
bt
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5.4 Multilayer Samples with Normally Incident, Arbitrarily Polarized Plane
Waves
“—>
To analyze multilayer structures, construct ﬁ» E» for each layer taking
cC D

into account the different ¢ and € for each layer. Obtain the overall ABCD
matrix as the product of the matrices for the individual layers. Thus, for
a 90°, 45°, 90° multilayer sample

i >, <> <> <—> > ;\—» <B—>

A B [hoge Bgpel [Hase Byse 90°  “90°

> > ) €~ b—r <> <D—~> 4C—+ B‘* . ( 68 )
c b Co0c  DPgoel | Cas° 45° 90° 90°

The resulting ABDC matrix relates the "total" (i.e., sum of incident and re-
flected) fields at the input side of the sample to the corresponding quantities
on the output side. Most often the desired end result of such analysis is
various ratios of traveling wave (not "total") fields. To facilitate calcula-
tions such as determining power reflected, power transmitted, power converted
from one polarization to another, etc., it is convenient after the overall
ABCD matrix is computed to convert to scattering parameters [4]. Scattering
parameters provide direct relationships between the traveling wave quantities.
Clearly, scattering parameters or their transmission counterpart could be used
to describe each laver and then combined to provide the overall multilayer
matrix. However, the determination of the overall ABCD matrix and then its
conversion to scattering parameters is computationally much more efficient in
the class of problems being considered.

5.5 Scattering Matrix for a Multilayer Anisotropic Structure with Normally
Incident, Arbitrarilv Polarized Plane Waves

Either normalized or unnormalized scattering parameters [4] may be used.
In many cases normalized parameters are a distinct advantage. At this point
there is little advantage to be gained from normalization and some danger of
confusion arising from the normalization process., Therefore, unnormalized
scattering parameters are used.

Let the fields on the input side of the sample be expressed as follows:

EX(Z) = Exi(z) + Exr(Z)

Ey(z) = Eyi(z) + Eyr(z) (69)
1
Hy(z) = Hyi(Z) + Hyr(Z) = ﬁ; [Exi(z) - E(2)]
+1
-HX(Z) = —[Hxi(Z) + er(Z)] = ﬁ—[Eyi(Z) - Eyr(Z)]

]
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where n_ = intrinsic impedance of input medium and the subscript i refers to
l incident traveling wave components while r refers to reflected or reverse
traveling wave components.

Similarly, fields on the output side of the sample are given in equa-
tion (70). Note, as is conventional in scattering analysis "incident waves"
travel towards the sample while "scattered or reflected waves'" travel away
from the sample. This means that incident waves on opposite sides of the
sample travel in opposite directions.

EX(z+t) = Exi(z+t) + Exr(z+t)
Ey(z+t) = Eyi(z+t) + Eyr(z+t) (70)
[ - - -1
v Hy(z+t) = Hyi(z+t) + Hyr(z+t) = n3[Exi(z+t) _Exr(z+t)]
—Hx(z+t) = -[Hxi(z+t) + er(z+t)] =%]L[Eyi(z+t) -Eyr(z+r)]

3

where n3 = intrinsic impedance of output medium.

If there are no sources on the output side of the sample, the incident
! signals from that side will be zero, i.e., E . (z +t) = E__.(z + t) = 0. It
! is assumed that this is true in the followinélanalysis. Sﬁ%stituting equa-
tions (69) and (70) into equation (67) and solving for the scattered or
reflected components in terms of the nonzero incident components yields the
following relationship. Note that since E . (z 4+ t) = E .(z + t) = 0, only the
first two columns of the scattering matrix are required”for this analysis.

, e T 1 le )]
5 xr (2 Si11 S12 813 Sy E (@
E (z) S S S S E . (2)
r 21 S22 Sa3 Sy,
v = v (71)
+
E (7t 531 832 S33 8y, 0
+
| B (2 tﬁ Ser B4z Siz Sag 0
where
B
_ 2 21 _ _ .8
S0 = alé * n NsCyy n, Dyql
B n
2 11 "s
- Sa2 Tl YR S ) Pl

-t [07




| .o -2 _ 22 _ S
Sy = ulAy, iy NCag * i Dyl
B n
12 s
= — - + - ——
S3p = aldy 1y ns¢12 iy D1,)
B B
. - 1 22
5, = [(‘\21 + 1S4y + (/\22 + 5 ) 541]
3 3
Bys By2
L AN L2
Spp = L H 4y + TR A o2 * 577 S4]
B B
_ A1 12
i i S G s n, ) Sq + (A, n, ) Sy
B B
o Bl Blp
S0 = LA, ¥ i ) Syp F Ay * a ) 840!
B.. n B n
e “12 s 21 _s
b =y = g Gy - s D)y Y -0 Gy - g Doy
3 3 3 3
B n ’ T\.‘
11 s 22 _s
-(ay, + ny T gl t 2 Dyy) Ay n, NgCyp * n3 = 0,0

Equation (71) can be used to calculate the quantities of interest in electro-
magnetic shielding problems. The procedure is to first calculate the total
4~port ABCD parameters for the multilayer sample, as indicated in Section 5.3.
The values of A, B, C. D.. obtained are used in equation (71) to deter-
mine the overali sca%%erlné pargmeters for the multilayer sample. Figure 21
and 22 illustrate shielding effectiveness calculated for some single-laver and
multilayer graphite epoxy shields. The value of €' is not critical for the
values of conductivity nciiized. Indeed varying Yo' from 1 to atsut 100

has no noticeable effect on the shielding effectiveness., Figure 21 illustrates
the effect on shielding effectiveness of varying polarization of the wave
incident on a single anisotropic layer. Data is plotted for polarization
parallel to the fiber direction (¢ = 0°), perpendicular to the fiber direction
(¢ = 90°) and inclined at 45° to the fiber direction (¢ = 45°). As would be
expected, much larger attenuation is experienced when the wave is polarized
parallel to the fibers. Figure 22 illustrates shielding effectiveness for
4-layer (0°, + 45°, 90°) and 7-layer (0°, + 45°, 90°, + 45°, 0°) structures.
The incident wave in each case is polarized parallel to the fiber direction

of the first layer.

5.6 Scattering Matrix for a Multilayer Anisotropic Shield with Incident
Plane Wave of Arbitrary Polarization and Angle of Incidence

Consider a shield consisting of planar, homogeneous. anisotropic lavers
ﬁ , arranged as shown in Figure 23. Each layer is assumed uniaxial with the optic
! axis parallel to the xy plane. Input and output regions are homogeneous and
isotropic with relative permittivities ¢" and €', respectively. A plane wave
of radian frequency ® is incident from the region z < 0 on the shield with iJ

|

i

1

angle of incidence ¢0.
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Figure 21. Shielding effectiveness of a single layer anisotropic

- e

shield for various fiber orientations. A plane wave
polarized in the ¢ = 0° direction is normally incident
on the input side of the shield, shield parameters are

t = .00525 inches, 0 = 2 x 104 mhos/m, ¢, = 2 X lO2

mhos /m, €1 T €2 = 3.
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To evaluate the shielding provided by this structure, the problem may
be stated as follows., Given the parameters of the anisotropic layers of the
shield plus the frequency and direction of propagation of the incident wave,
determine the reflected and transmitted waves. Using the techniques of
Section 5.3 of this report, the above problem reduces to that of determining
the transfer matrix of the stratified anisotropic shield for the specified
excitation. The folloiwng derivation of the necessary transfer matrix is
similar to the optic problem solved by Semenko and Mironov [20].

Within each anisotropic layer, Maxwell's curl equations become

> >
VXE-= -jwuoH
VXH= (o+ we)E

«— — . . P
where ¢ and € are the matrix representations of the layer conductivity and
permittivity, respectively, and unity relative permeability has been assumed.

Eliminating H from (72) yields the wave equation for this type of
anisotropic media.

2> o 2.z
VE = V(V » E) - Bo<e>E (73)
where
2.
T2
c

ces = . 1 **_-C 1 P

€> = ;r -] weo 0 = Complex permittivity

R d

Er = Matrix representation of relative permittivity
Eo = Permittivity of free space, and

e d <>
Sr and 0 are assumed to have the same optic axis.

Based on the assumption that each layer is uniaxial and recognizing
that the matrix representation of the complex permittivity is symmetric [21],
<e> can be written in the following form.

X y z
1 f1 | F12 0 |
g =y 612 £ 0 (74)

22




where

€ s'm2 T +e
1

€2 = (ez - el) sin ¢ cos

€33 © &2

El, 62 are the principal axis complex permittivities

¢ is the angle between the x-axis and the optic
axis,

The tangential field components and their first derivatives are contin-
uous across any interface parallel to the xy plane. Thus,

2
— = 0
9y (75)

d . _ .
™ —JBO\/EOr sin ¢° = constant = ka

where Eor is the relative permittivity of the input medium.

Substituting (74) and (75) into (73) yields for the z-component of E

-jkx
Ez = f DZEx (76)
where
kx = BO/E; sin ¢o
Dz = d/dz
_ a2 2
= 60633 - kx .

The tangential field components Ex and E must satisfy the following homogen-
eous matrix equation, y

(77)




| Equation (77) is a system of two second-order ordinary differential equations.
Solutions of the form exp{~jk z} are sought. Thus, Dz = -jkz and after
simplification (77) becomes

' I 2 2 B<2>€33 2 i E
r 0 Bof11 ~ Kk, T BE12 x
- (78)
I 2 2. 2 .2
1 L_O Bof12 Boag ~ Ky T Ky Ey_
- -

If (78) is to have a non-trivial solution, the determinant of the coefficient
‘ matrix must be zero. This constraint yeilds Fresnel's equation and permits
i the solution for the z-compénent of the wave vector, k_. After some algebraic
F manipulation, the following quadratic in kg is obtained.

3 2 8
. 2 2)(. f11 ) f 22
} 0'={k]—[k]f—-—+g +—-—[g€ —Bs] (79)
z 2" €55 ) g3 511 o012
1 where
i
; 2 2
! o 80622 kx *
3
: Solving for ki yields
€ € 2 ez
} z 33 33 33
=1
_2(CiR)-

Denoting the four admissible solutions (80) as ki for i =1, 2, 3, 4 yields

—l -
kl =3 vC R k3
(81)
——1 - = -
kZ =% vC R k4

The general solutions for Ex and E can now be obtained from (73) and are of
the following form. y

L}
W~

E (2) Y;94 exp{-jkiz}
=1 (82)

4
E (z) = )} q.exp{-jk, z}
y =1 1 !
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Likewise, the tangential components of the magnetic field are of the form:

4
- =1 .
H (z) = o 121 q ki exp{-Jkiz}
(83)
B§€33 4
Hy(Z) = ~Fon izl Yy 4y ki exp{—Jkiz} .

The constants q.(i = 1, 2, 3, 4) can be evaluated by applying boundary condi-
tions to the taﬁgential components of the electric and magnetic fields.

Using (82) and (83), the tangential field components may be expressed
in matrix form as follows.

Q(z) = T e(2)Q (84)

_Ex(Z)

E (2)
Q(z) = y
Hy(Z)

LHX(Z)_




exp(-jklz) 0 0
0 exp(—jkzz) 0
e(z) = S
0 0 exp(—jk3z) 0
0 0 exp(-jk4z)
1 1 1 1
F =
OpYiky | Pk | PpYsks | PiKRLY,
Pokq Pok, Oykq Pk,
2
0 Bo€33
1 fwuo
1
Py = —".
2 wuo
Likewise, the inverse of the matrix is
L, N B PYAPA
-1 Y1 | ek, Y1705k,
-1 1
T = 7y
1 -Y, -1/plkl Y2/02k1
-1 S ogky | =Y1/05ky
where A = Yl - Y2

and k., and k2 are the two solutions to Fresnel's equation

1

Yi=

11

~“12
£

33

2
T f kz

for i

k_=k,

z

1
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Consider the layered shield depicted in Figure 24. In each region the
tangential field

Region 1 Region 2 Region 3

Zy Zy

Figure 24, Layered Anisotropic Shield

components are given by (84)

Region 1. Q(z) Flel(z)Ql z < Z1

Region 2. Q(z) I‘zez(z)Q2 Z, <z < 22 (85)

1
Region 3. Q(z) = F3€3(z)Q3 z > 22

Column vectors Ql’ Q. are chosen such that the tangential fields Q(z) are
continuous throughou% the three regions.

Q(Zl) = Flel(Zl)Ql = erz(zl)q2 (86A)
Q(Zz) = l"zs:z(zz)Q2 = I‘3e3(22)Q3 (86B)

From (86B)
Q, = [T,e,(2) 17z, . 87)

Substituting (87) into (86A) yields

-1
QZ)) = T,e,(2)) [The,(2)]172(Z,)

r,le, 2 es ) 105 ez, (38)

| -1
= [1"2&:2 (22 - Zl)l“2 ]Q(Zz)

Equation (88) specifies the transfer matrix (note that this transfer
matrix is for output variables in terms of input variables) for the region

Z1 <z < ZZ' The quantity 22 - Z1 is simply the thickness of the region. For
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a a gystem of N layers, each of thickness d,, the overall transfer matrix is
simply the product of the transfer matrices for the individual layers.

N
T= T [%. e—l(d.)Ff%} (89)
jep L3 i3

; From equation (89) the transfer matrix of a single anisotropic layer of
thickness d can be written in the following form.

—
[_A11 Ay By By
¥ o | %1 A By By
B T = (90)
o 9 %2 Pin Pp
3 {_021 Coap Dyp Dy 4
where
1 27 2 - , 2 N
A11 = D11 = ———57[;05 ¢ cos” ¢ cosh 91 + sin ¢ cosh 8;]
cos U -1
A22 = D22 = IZA(;inZ ¢, cosh 61 + cosz ¢ cos2 r, cosh 6;}
cos U+ ol
A =D = L sin 7 cos ‘osh 6 ~ cosh é”]
21 ~ 12 ~ Sin L cos g)c 17 ¢ 2
cos U ~
A =D = cos2 6 A
12 21 ’ 21
1 4 M 2 Ao A2 "
B = ———|cos ¢ —=— cos~ ¢ sinh 6, + n, cos ¢ sin~ ¢ sinh O
11 2. A 1 2 2
cos U cos V
B =B = L cos2 $ nl sinh @ - a cos $ sinh é sin cos §
12 °21 24 ~ 1”2 2 ¢
cos Ul- cos V -
B = 1 nl sin2 z sinh 8 +n cos $ cos2 sinh 6
22 ~ ¢ sinh by ¥ 0y 5 2

coszU cos G




C,, = L E—9—§-—-Y-(:osz ¢z sinh 6. + —-—----—-1'—-—-—-sin2 ¢ sinh ©
11 2~ A 1 ~ N 2
cos U n n, cos ¢
1 2
- _ 1 . cos V ~ 1 A
C12 C21 coszﬁ sin ¢ cos {|—— sinh 91 - == cos ¢ sinh 62
nl nz )
C22 = 12A 59%—! sin2 Z sinh 61 + fl—-cos3 ¢ cos2 ¢ sinh 62
cos U ) ﬂl nz
and
N by M
nl - €
o /e,
1
;\] =“/}l_g_/}_‘l___2
2 Ve Ve
2
cos2 ¢ =1- or sin2 ¢
€
2
cos2 U=1 - —or sin2 ¢ cos2 z
£
2
c052 6 = c052 ﬁ - 2L sin ¢ sin ¢
€ o
1
61 = jkld
62 = jkzd .

Scattering parameters and hence reflected and transmitted fields can
now be calculated using Equation 71 of Section 5.5 of this report. Equations
(90) reduce to Equation (66) of Section 5.3 when the angle of incidence, ¢1,
is set equal to zero.

6.0 Summary and Conclusions

"ABCD" and '"Scattering" matrix analysis techniques for determining
shielding effectiveness of isotropic and anisotropic multilayered shields are
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presented. These techniques are well-suited to computer implementation., Such
programs have been generated and reported on separately.

Given appropriate intrinsic material properties as input, the computer
simulations yield surface transfer impedance and shielding effectiveness
numbers in excellent agreement with Boeing [6] experimental data. The programs
can also be used to infer intrinsic material parameters given measured surface
transfer impedance and/or shielding effectiveness data,

From reported measurements on advanced composite materials, it is
apparent that the major shielding problem associated with these materials
arises from seams and joints., Even in the laboratory under well controlled
conditions, it has proven exceptionally difficult to obtain reliable, repeat-
able joints, Many of the measured results appear erratic (especially in
comparing between different measurement schemes) largely due to uncontrollable
seam and joint leakage where the composite sample is mated to the measurement
system.
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APPENDIX A

DERIVATION OF EQUATION (9)

Moser [7] and Bannister [8, 9] have provided an integral equation
solution for the shielding effectiveness of the two-loop/infinite flat plate
geometry assuming uniform current in the loops. It is assumed that the shield
can be neglected. The complete expression for the shielding effectiveness as
given by Bannister is shown in equation (A-1).

j A5 (raye ‘o%an (A.1)
1
S. .. = 20 log,, — I
© UtdB 10 4u .2
r cAT ~Toz-t(1=To)
)( 2 3, Ga) dh
% o
where 1
- ((/T 2 _ N2 -2ty
C= [(t/t  +u) (t/t - )¢ ]
1= 02 4 412
42 2.1/2
1,= (A" + Y,
Y0= %21— = free-space propagation factor
air
. 1/2 , . .
Y = (Jwu_p o) = propagation constant in the shield
or .
(displacement currents are neglected)
1/2 1
e T J/lé - o0 - g
2
1/2 . . .
§ = (2/wuouro) = gkin depth in the shield

W o= relative permeability of the shield

shield thickness
shield conductivity

r, + r, = center—to-center separation of the two loops

1

Jl(Aa) = Bessel function of order one and argument (}a).

a loop radius

A dummy variable of integration

= a2 + 22

r
A ;= wavelength in air
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Simplified approximate forms of Moser's formula can be derived under

| certain conditions {3, 4]. Let r' = [a2 4+ (z - t)2]1/2 be termed the
ir
measurement distance. Then for conditions such that r' < 20 ’ Trt > 2,
T r'
Trr' > 10 and — > 10 are satisfied, the shielding equation takes on the
r

much simpler form given below.

T.r'

1 1
S. E.,_ =~ 8. S S A A S A.2
B.gp © 8686 V2T ¢t + 20 log10,(8_485ur)(z_t)(r ) (a.2)
If, as is usually the case, z>>t, then:
T 2z
i . E. ~ 8, _r r,2 A3
| S. E.gp = 8.686Y2T t + 20 1oglo’ 5485 ) ’ . (a.3)

If in addition z>>a, then:

T 2
N r
S.E. 8.686/71 t + 20 log, (ETZEEG;) . (A.4)
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